Suppressive Effects of Anthrax Lethal Toxin on Megakaryopoiesis
نویسندگان
چکیده
Anthrax lethal toxin (LT) is a major virulence factor of Bacillus anthracis. LT challenge suppresses platelet counts and platelet function in mice, however, the mechanism responsible for thrombocytopenia remains unclear. LT inhibits cellular mitogen-activated protein kinases (MAPKs), which are vital pathways responsible for cell survival, differentiation, and maturation. One of the MAPKs, the MEK1/2-extracellular signal-regulated kinase pathway, is particularly important in megakaryopoiesis. This study evaluates the hypothesis that LT may suppress the progenitor cells of platelets, thereby inducing thrombocytopenic responses. Using cord blood-derived CD34(+) cells and mouse bone marrow mononuclear cells to perform in vitro differentiation, this work shows that LT suppresses megakaryopoiesis by reducing the survival of megakaryocytes. Thrombopoietin treatments can reduce thrombocytopenia, megakaryocytic suppression, and the quick onset of lethality in LT-challenged mice. These results suggest that megakaryocytic suppression is one of the mechanisms by which LT induces thrombocytopenia. These findings may provide new insights for developing feasible approaches against anthrax.
منابع مشابه
Anthrax lethal toxin induces cell death-independent permeability in zebrafish vasculature.
Vascular dysfunction has been reported in human cases of anthrax, in mammalian models of Bacillus anthracis, and in animals injected with anthrax toxin proteins. To examine anthrax lethal toxin effects on intact blood vessels, we developed a zebrafish model that permits in vivo imaging and evaluation of vasculature and cardiovascular function. Vascular defects monitored in hundreds of embryos e...
متن کاملBRAF status and mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 activity indicate sensitivity of melanoma cells to anthrax lethal toxin.
Anthrax lethal toxin, composed of protective antigen and lethal factor, was tested for cytotoxicity to human melanoma cell lines and normal human cells. Eleven of 18 melanoma cell lines were sensitive to anthrax lethal toxin (IC(50) < 400 pmol/L) and 10 of these 11 sensitive cell lines carried the V599E BRAF mutation. Most normal cell types (10 of 15) were not sensitive to anthrax lethal toxin ...
متن کاملNon‐canonical effects of anthrax toxins on haematopoiesis: implications for vaccine development
Anthrax receptor (ATR) shares similarities with molecules relevant to haematopoiesis. This suggests that anthrax proteins might bind to these mimicking molecules and exert non-specific haematopoietic effects. The haematopoietic system is the site of immune cell development in the adult. As such, ATR ligand, protective antigen (PA) and the other anthrax proteins, lethal factor, edema factor, cou...
متن کاملCardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy
BACKGROUND Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunctio...
متن کاملQuantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R.
Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live...
متن کامل